How Long Does a Face Lift Last? Objective and Subjective Measurements over a 5-Year Period

Barry M. Jones, M.S., F.R.C.S.
Steven J. Lo, M.A., F.R.C.S.Plast.
London and Glasgow, United Kingdom

Background: The longevity of face-lift surgery is a key question that has not been adequately addressed by previous studies. No study has used standardized photographs, objective measurements, or validated subjective scoring systems.

Methods: From 2001 to 2011, photographs were standardized in this institution. Fifty primary face-lift patients were assessed 5.5 years after surgery using objective measurements from standardized photographs, a region-specific subjective assessment (Scale Summit II scores), and an overall subjective assessment (Global Aesthetic Improvement Scores).

Results: For the first outcome measure, the jowl elevated in vertical height by 6 mm after face-lift surgery, with a relapse of 21 percent at 5.5 years. Jowl correction was maintained at 5.5-year follow-up (p < 0.0001). Cervicomental angle decreased by 13 degrees after face-lift surgery, with partial relapse of 69 percent at 5.5 years. For the second outcome measure, scores showed significant improvement in all areas following a face lift (jowl, nasolabial, and marionette, p < 0.0001; neck, p = 0.0007). At 5.5 years, no subjective worsening of any area was noted except the neck. For the third outcome measure, scoring suggested that 76 percent of patients will still appear younger 5.5 years after a face lift than they did before the face lift.

Conclusions: This study indicates that differential regional aging occurs after face lifting, with the jowl, nasolabial, and marionette areas remaining well corrected at 5.5 years but with partial relapse of neck correction. Long-term global aesthetic assessment remains positive in the vast majority of patients. This study provides strong evidence that face-lift surgery can provide significant long-term aesthetic gains.

CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, IV.

Patients seeking advice regarding facial rejuvenation surgery frequently say that they want to appear refreshed and less tired, but definitely do not want to appear as though they have had an operation—the wind-tunnel appearance is often mentioned. Almost all will ask how long a face lift will last. Presently, there are few validated scientific data with which to reassure patients that the outcome they are seeking is likely to be achieved without the stigmata that they wish to avoid, or to give them any honest indication of durability.

Most surgery of this type is carried out in private practice, creating inherent difficulties in gathering data—photographs are often not standardized, and it is notoriously difficult to persuade patients to return for long-term follow-up. This problem has been highlighted in prospective U.S. Food and Drug Administration studies evaluating breast implants, with follow-up as low as 9.6 percent at 3 years.1 In face-lift surgery, this is compounded by the lack of a simple objective method of measuring soft-tissue changes.

Disclosure: The authors have no financial conflicts of interest to disclose. No funding was received in relation to this study.

Supplemental digital content is available for this article. Direct URL citations appear in the text; simply type the URL address into any Web browser to access this content. Clickable links to the material are provided in the HTML text of this article on the Journal’s Web site (www.PRSJournal.com).
APPROACHES TO OUTCOME MEASUREMENTS

There are many subjective scores that can be used in the evaluation of face-lift outcomes. Validated scales such as the Lemperle wrinkle score and the Fitzpatrick wrinkle score, although important in outcomes research, cannot be used to adequately counsel patients.2,3 Patients cannot meaningfully interpret concepts such as an improvement of 1 on a scale of 6. In addition to validated outcome measures, there are other non-validated measures that are of questionable significance, such as perceived patient age.4 Such measures are difficult to assess accurately and are prone to confounding factors such as makeup, hairstyle, expression, and lighting.

PREVIOUS STUDIES ON FACE-LIFT LONGEVITY

Previous studies on the longevity of a primary face lift are limited by a number of significant flaws. None has used objective measurements or validated observer-rated aesthetic scores. Most observations therefore represent expert opinion only. Only six patients have had photographs assessed by any scoring system, in the published literature, and no patients in any study have been assessed using a validated observer-rated scoring system5–8 (Table 1). This is clearly insufficient for statistical analysis or objective, unbiased interpretation. Nearly all studies on the longevity of primary face lifts have been performed on patients returning for secondary face-lift surgery, which may also represent a significant source of selection bias. Patients with stable results may not return for further surgery.

There are four published studies that seek to address longevity in face-lift surgery with long-term follow-up cohorts (Table 1). Sundine et al. examined 42 patients who presented for secondary face lifts at an average of 11.9 years after primary surgery.6 This was interpreted as meaning that on average a face lift will “last” 11.9 years. The validity of this conclusion is debatable, as no objective or validated subjective scoring was performed on the aesthetic results. Liu and Owsley examined 89 cases of secondary face lift with the Owsley Face lift Satisfaction Questionnaire.5 Patients rated themselves as appearing approximately 11 years younger after face-lift surgery. Of this cohort, only six cases underwent photographic analysis. In this, they acknowledge that given the paucity of photographed patients, statistical analysis of observer-rated scores was not

<table>
<thead>
<tr>
<th>Study</th>
<th>No. of Patients</th>
<th>Follow-Up (yr)</th>
<th>Photographic Assessment?</th>
<th>Objective Measurements?</th>
<th>Validated Observer-Rated Aesthetic Assessments?</th>
<th>Scoring System Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liu and Owsley, 20125</td>
<td>89 (6 photographed only)</td>
<td>12.6</td>
<td>Six cases, standardization not stated</td>
<td>No</td>
<td>None</td>
<td>Owsley Satisfaction Questionnaire</td>
</tr>
<tr>
<td>Sundine et al., 20106</td>
<td>42</td>
<td>11.9</td>
<td>Four cases, standardization not stated</td>
<td>No</td>
<td>None</td>
<td>Expert critique only</td>
</tr>
<tr>
<td>Alpert et al., 20098</td>
<td>4 (two sets of twins)</td>
<td>10</td>
<td>Not objectively assessed</td>
<td>No</td>
<td>None</td>
<td>Expert critique only</td>
</tr>
<tr>
<td>Guyuron et al., 19977</td>
<td>53</td>
<td>8.5</td>
<td>Not objectively assessed</td>
<td>None</td>
<td>None</td>
<td>Patient-rated satisfaction survey (not validated)</td>
</tr>
</tbody>
</table>
possible. Guyuron et al. examined 33 cases of secondary face lift, with patient-rated questionnaires suggesting that the face lift took between 9 and 10 years off their subjective, self-rated age.⁷ No observer-rated aesthetic assessments were performed on this cohort. The prospective “twins study” on four patients operated on by Baker, Hamra, Owsley, and Ramirez represents one of the few with assessment of patient photographs, but without the use of any rating scales.⁸ Given the limited number of cases, this analysis represented a forum for expert critique rather than statistical analysis.

None of these studies on face-lift longevity objectively assesses how long a face lift lasts. The specific degree of relapse of certain areas of the face, and whether facial aging is region specific or global following a face lift, remains undefined. The present study has been designed to address some of these shortcomings using both objective measurements and validated subjective aesthetic assessments. In addition, it is hoped this will enable us to honestly answer the following questions asked by nearly all face-lift patients in simple, relevant terms.

1. How long will a face lift last (i.e., will I still appear better in several years than I do now)?
2. Will I appear like I have had a face lift (“wind-tunnel” appearance)?

This study aimed to assess the longevity of a primary face lift using three types of measures: objective measurements from standardized photographs, region-specific subjective assessments, and overall subjective assessments using validated scoring systems.

PATIENTS AND METHODS

Ethical approval was obtained from the Institutional Review Board of King Edward VII Hospital, London. In 2001, the senior author (B.M.J.) standardized clinical photography in his practice. From 2001 to 2011, he carried out 1745 face lifts. Inclusion criteria included patients who were female, white, and underwent primary face lifts only. Fifty primary face-lift cases with long-term standardized follow-up were included in this study. The average age was 51 years (range, 40 to 62 years), with a mean follow-up of 5.5 years (range, 2.5 to 10 years).

Primary Surgery

Three face-lift techniques were used. Modified superficial musculoaponeurotic system (SMAS)—ectomy and lateral platysmaplasty⁹,¹⁰ in 28, the volumetric face lift¹⁰,¹¹ in 14, and SMAS plication and lateral platysmaplasty in eight. Forty-three incorporated an incision extending into the postauricular and mastoid region, whereas seven used a limited scar.¹² Additional aesthetic procedures in the lower third of the face and neck included syringe-based liposuction in the submental region (six cases) and jowl (23 cases), and osseous genioplasty (advancement in two and recession in two). A standardized method of lateral SMASectomy and lateral platysmaplasty⁹,¹⁰ was performed, with a rhomboidal excision of SMAS of 10 × 2 cm in all patients. Techniques using SMAS plication underwent a similar technique but with plication of the same area. Volumetric face lift was standardized according to the technique described by Little and its limited scar modification.¹¹,¹³

Method

All photographs since 2001 were taken in a studio with consistent lighting [two Interfit studio lights at 45 degrees (Interfit Photographic, Ltd., West Midlands, United Kingdom)], background, seating position, camera system [Nikon digital SLR (Nikon, Tokyo, Japan)] and lens (set at 70 mm). Patients were photographed, not smiling, in five different views: anteroposterior, bilateral 45-degree oblique, and lateral at a distance of 2 m. All photographs were taken by the same photographer.

Objective measurements were performed after anteroposterior views of preoperative, postoperative, and long-term follow-up photographs were superimposed with Adobe Photoshop (Adobe Systems, Inc., San Jose, Calif.). Key points including the jowl position, corner of mouth, and alar base were marked on each layer separately (Fig. 1, left). Key points were subsequently measured using Facegram, a program that has been validated for facial measurements (Facial Nerve Center, Massachusetts Eye and Ear Infirmary, Boston, Mass.)¹¹ (Fig. 1, right). The cervicomenatal and jowl angle (defined as the angle subtended by the most dependent jowl point with the mandible) were measured on lateral views (Fig. 2).

Validated scales for subjective assessment were used to corroborate the objective measurements. To minimize confounding features, photographs were cropped to exclude, hair, clothing, and background. The validated scales from the Summit Scale II were used in the assessment of the neck, jowl, marionette, and nasolabial areas (Table 2).¹⁵–¹⁷ Although recent and as yet less established,
Fig. 1. (Left) Method of anteroposterior measurement; the preoperative, postoperative, and long-term follow-up photographs are superimposed in separate layers. Key points in each layer are marked separately: green, preoperative; red, postoperative; and yellow, long-term follow-up. (Right) Measurements using FACEgram software. Both irises are measured, and the midpupillary line and facial lengths are calculated. Here the jowl is calculated relative to the subnasale.

Fig. 2. Lateral measurements. The cervicomental angle and the jowl angle (angle subtended by maximum jowl point with mandible) are measured.

Table 2. Summit Scale II Scoring Systems*

<table>
<thead>
<tr>
<th>Region</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neck volume</td>
<td>No sagging</td>
<td>Mild sagging</td>
<td>Moderate sagging</td>
<td>Severe sagging</td>
<td>Very severe sagging</td>
</tr>
<tr>
<td>Nasolabial fold</td>
<td>No folds</td>
<td>Mild folds</td>
<td>Moderate folds</td>
<td>Severe folds</td>
<td>Very severe folds</td>
</tr>
<tr>
<td>Marionette lines</td>
<td>No lines</td>
<td>Mild lines</td>
<td>Moderate lines</td>
<td>Severe lines</td>
<td>Very severe lines</td>
</tr>
<tr>
<td>Jowl</td>
<td>No sagging</td>
<td>Mild sagging</td>
<td>Moderate sagging</td>
<td>Severe sagging</td>
<td>Very severe sagging</td>
</tr>
</tbody>
</table>

these scales were chosen, as they have been subjected to a more rigorous validation process than any other scales presently available. In addition to region-specific scales, the overall appearance of the lower face (excluding the eyes and brow) was assessed using the Global Aesthetic Improvement Score.18 Photographs were assessed blinded to the rater and presented in random order. Region-specific scoring (Summit Scale II) was performed by two independent raters (plastic surgeon and aesthetics specialist nurse), and global scoring (Global Aesthetic Improvement Score) was performed by five independent raters (a plastic surgeon, two nurses, and two nonmedical professionals).

RESULTS

Part 1: Objective Measurements

Jowl

The change in vertical height of the most dependent jowl point was 5.6 mm on average, with a nonsignificant relapse of 1.2 mm (21 percent) on long-term follow-up at 5.5 years (Table 3 and Fig. 3). The jowl angle increased on average by 14 degrees, indicating an improvement in jawline contour, and relapsed by 2 degrees (14 percent) long term (Table 3 and Fig. 4). Statistical analysis indicated that both measures of jowl severity improved significantly after a face lift and did not relapse significantly on long-term follow-up (Table 3).

Cervicomental Angle

The cervicomental angle was 139 degrees preoperatively, 126 degrees postoperatively, and 135 degrees at long-term follow-up. The results indicate that although the cervicomental angle is significantly corrected postoperatively ($p = 0.0007$), with an average decrease in angle of 13 degrees, this correction relapses partially by 9 degrees (69 percent) toward the original preoperative cervicomental angle. The preoperative and long-term follow-up cervicomental angles were therefore not statistically significantly different ($p > 0.05$).

A number of variables were assessed for influence on the relapse of the cervicomental correction. Age, initial preoperative cervicomental angle, length of follow-up, type of incision, and the use of submental liposuction did not show any statistical association with cervicomental relapse (data not shown). The only variable that was statistically associated with cervicomental relapse was method of platysmaplasty. Lateral excisional approaches resulted in a relapse of 50 percent toward the preoperative angle, whereas lateral pli-
cation approaches resulted in a relapse rate of 131 percent. The difference between these groups favored the excisional approach (unpaired t test, \(p = 0.002 \); Bonferroni corrected significance value, \(p = 0.008 \)).

A separate analysis of changes in the neck was carried out in patients who eventually proceeded to secondary face lift surgery, to exclude the possibility that bias may have occurred because they had poorer initial results (20 of 50 cases). Partial relapse of the cervicomental angle was still noted in patients who did not undergo secondary surgery (91 percent relapse in cervicomental angle correction).

Adverse Potential Stigmata of Face Lift

The alar base and the oral commissure width were measured as relative indicators of adverse stigmata of face lift. Neither showed any signifi-
cant changes between preoperative, postoperative, and long-term follow-up views (one-way analysis of variance, $p = 0.97$ and $p = 0.33$, respectively). In addition, the angle subtended by the commissure elevated consistently by 5 degrees ($p < 0.001$) (Table 3).

Part 2: Region-Specific Subjective Assessment (Summit Scale II Scores)

Jowl, Nasolabial Fold, and Marionette Lines
Statistical analysis of subjective regional scores for the jowl, nasolabial fold, and marionette lines indicates that there is a highly significant correction following face lift ($p < 0.001$ in all cases) that is maintained at long-term follow-up (Table 4).

Neck
Statistical analysis of subjective scores for the neck indicate a significant correction of the neck following face lift surgery ($p < 0.001$), but the difference between preoperative and long-term follow-up scores was insignificant ($p > 0.05$), suggesting loss of correction (Table 4).

Part 3: Overall Subjective Assessment (Global Aesthetic Improvement Score)
Assessments with the Global Aesthetic Improvement Score indicated that 76.4 percent of patients were rated as improved on long-term follow-up at 5.5 years, in comparison with preoperative photographs (Figs. 5 and 6).

See Figure, Supplemental Digital Content 1, which shows a typical view for each patient, http://links.lww.com/PRS/A612. Note that standardization of photographs results in equivalent shadowing in all views and twin catchlights in the iris of all patients. Views are cropped of hair and clothing for subjective estimates, and the eyes are excluded for global assessments (above, anteroposterior views preoperatively, postoperatively, and at 5 years; center, lateral views; and below, 45-degree oblique views). Please note that the patients presented here are the only patients who have consented to have their photographs published. This may represent a selection bias toward a milder degree of facial aging, with patients with a greater degree of facial aging not presented here because of consent issues.

See Figure, Supplemental Digital Content 2, which shows a patient with 5-year follow-up of lateral SMASectomy and lateral platysmaplasty face lift, http://links.lww.com/PRS/A613 (above, anteroposterior; center, lateral; and below, 45-degree oblique views).

Table 4. Region-Specific Subjective Scores Assessed with Summit Scale II

<table>
<thead>
<tr>
<th>Group</th>
<th>A (Preoperative)</th>
<th>B (Postoperative)</th>
<th>C (Long-Term Follow-Up)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jowl</td>
<td>1.9</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td>Nasolabial fold</td>
<td>3.1</td>
<td>2.4</td>
<td>1.9</td>
</tr>
<tr>
<td>Marionette lines</td>
<td>2.0</td>
<td>1.1</td>
<td>1.5</td>
</tr>
<tr>
<td>Neck</td>
<td>1.5</td>
<td>1.3</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Kruskal-Wallis, three groups. $p < 0.001$.

Categorical scores from 0–4 (mean scores for each region).

Copyright © American Society of Plastic Surgeons. Unauthorized reproduction of this article is prohibited.
See Figure, Supplemental Digital Content 3, which shows a patient with 4-year follow-up of lateral SMASectomy and lateral platysmaplasty face lift, http://links.lww.com/PRS/A614 (above, anteroposterior; center, lateral; and below, 45-degree oblique views).

DISCUSSION

Differential Regional Aging following Face-Lift Surgery

This study provides validated evidence for the first time that positive aesthetic changes from face-lift surgery are maintained over several years. Improvements are maintained most efficiently in the jowl and marionette regions, but to a lesser degree in the neck. The objective and validated subjective regional scores suggest some differential regional aging in the post–face-lift period. The concept of regional versus global facial aging has been discussed by others, but not in relation to post–face-lift aging.19

An elevation of 6 mm in vertical jowl height was achieved and maintained over 5.5 years. This is confirmed by lateral measurements of jowl angle, and further corroborated by subjective scoring of the jowl. Likewise, improvements in the nasolabial and marionette folds are maintained

See Figure, Supplemental Digital Content 4, which shows 5-year follow-up of volumetric face lift, http://links.lww.com/PRS/A615 (above, anteroposterior; center, lateral; and below, 45-degree oblique views).

Fig. 5. Overall subjective scores (Global Aesthetic Improvement Scores) of long-term follow-up after face lift versus preoperative photographs; 76 percent of patients remain subjectively improved at 5.5-year follow-up in comparison with preoperative photographs.

Fig. 6. Summary of findings on the regional longevity of the face lift showing changes at 5.5-year follow-up in comparison with early post–face-lift photographs. (Left) Changes on lateral view; the neck correction partially relapses on objective and subjective scores. (Right) Changes on anteroposterior view; face-lift correction is well maintained, with no significant changes on objective measurements or on subjective scores.
on long-term follow-up. In terms of regional aesthetic changes, the greatest subjective change after face-lift surgery occurred in the jowl (improved by a Summit Scale II score of 1.4 after surgery) and the marionette (0.9). The least subjective correction occurred in the nasolabial (0.7) and neck regions (0.6). All areas except the neck maintained this subjective degree of correction on long-term follow-up after face-lift surgery.

A key novel finding was of a greater progression of “aging,” or relapse of surgical correction, in the neck than in other areas in the lower third of the face. This was noted on objective measurements of the cervicomental angle and on subjective regional scoring. Multiple variables were analyzed to determine whether there were specific associations with neck relapse. Age, initial preoperative cervicomental angle, length of follow-up, type of incision, and submental liposuction did not influence relapse. The type of lateral platysmal correction was statistically significant, favoring an excisional over the plication approach. This may be confounded by the choice of technique being partly determined by facial morphology. Plication, being used mainly in the volumetric technique, is performed predominantly in younger patients with differing neck morphology compared with other groups. Neck morphology may, as Lambros and Stuzin have discussed, be a key determinant of longevity.20

The Cervicomental Angle Revisited

Two key issues arise from the finding that the correction of the neck partially relapses on long-term follow-up. First, what is the significance of this in the context of a face lift overall (i.e., does it matter to the patient)? Second, should this change our approach to the neck (i.e., does it matter to the surgeon)?

The first question was addressed in part by the global subjective assessments of the face. In this, it was noted that despite loss of neck correction, the majority of patients (76.4 percent) were still rated as improved on long-term follow-up views in comparison with preoperative views. This included lateral photographs that highlighted loss of neck correction. When the jowl remains well corrected, the neck may be of secondary importance. This is supported in part by a Principal Components Analysis by Rzany et al. analyzing a cohort of 359 patients, in which the lower third of the face, and in particular the jawline and jowls, accounted for much of the variance in subjective aesthetic scores.21 It is possible that neck contour may not be as strong a determinant of facial age in the presence of a well-corrected jowl.

The second question is more controversial. There are a number of techniques described to improve the contour of the neck. Those most commonly used are based laterally9,22 or in the midline.23 There is no objective assessment of the specific benefits or duration of either. The senior author’s preference is to offer a midline corset technique when platysma bands are significant. However, following discussion, many patients will refuse it, even if the potential outcome is better, because of the additional recovery time needed and associated morbidity—pain, stiffness, haematoma,24 “leather neck,”25 pseudomarginal mandibular nerve palsy,26 and true nerve paresis.19

A suture-based technique, analyzed by its author in 100 cases, suggests excellent subjective long-term results at up to 13 years postoperatively.27 Unfortunately, the validity and interpretation of the results are partially marred by the lack of objective measurements or validated scoring systems.

Although we counsel patients regarding such risks, of the cases in the present study that proceeded to a second face lift, 20 percent were managed with techniques other than a lateral platysmaplasty (midline platysmaplasty, n = 3; suture-based suspension, n = 1). However, without evidence on the longevity of alternative techniques, it is presently not possible to adequately answer the question of whether our findings in the neck should change surgical management. However, the present study does provide a baseline from which other techniques may be assessed.

Longevity versus Aesthetics

The longevity of a face-lift technique should not be considered in isolation. A long-lasting but abnormal appearing face lift is clearly undesirable. Lambros and Stuzin have noted that although a tightly vertically pulled skin flap may produce longevity, it will be at the expense of adverse stigma.20 The present study therefore included assessment of alar base and commissure widening, features associated with a wind-tunnel effect. These did not change in the short or long term after surgery. The position of the earlobe was not measured in this study, but no pixie lobe deformities were seen.

Patients seek reassurance that their mouth will not be widened, but also wish to appear less “miserable.” The commissural measurements confirm that the mouth is not widened. However, the con-
sistent upward change in commissural angle almost certainly accounts for some of the positive change in “facial mood” that patients note following face-lift surgery.

Bias and Limitations

The majority of previous studies on face-lift longevity have been made on cohorts consisting exclusively of secondary face-lift patients,\(^5\)\(^-\)\(^7\), a group that may represent a population with poorer outcomes than average. In the present study, this selection bias has been mitigated by two factors. It is the only study in the literature to have a significant cohort of patients who were not seeking advice about further face lifts, but were inquiring about an unrelated topic (60 percent of patients). Furthermore, when those patients who did seek a second face lift were excluded from the statistical analyses, the findings remained the same.

No two-dimensional photographic measurement technique is 100 percent accurate. It is impossible to entirely standardize facial expression and position, but major sources of systematic error (such as change in lighting or photographer) have been excluded by standardization of photographs during the 10-year duration of this study, and the software used in the analysis has been previously validated in other clinical studies. Moreover, the objective measurements were corroborated by the validated aesthetic scoring, and the conclusions remain the same when the objective measurements are removed entirely from the analysis.

Implications for Patient Counseling

The present study may not radically alter patient management but does provide vital information for patient counseling. With regard to the first question (how long does a face lift last?), at 5.5 years after surgery, there is no significant objective or subjective sign of continued aging or “relapse” in any area except for the neck. Overall, the improvements of surgery are maintained. This study suggests that the vast majority of patients (76.4 percent) will continue to appear better several years after surgery than they did before. With regard to the second question [will I appear as though I have had a face lift (wind-tunnel effect?)], assessment of the alar base and commissure width suggests that with an appropriately performed face lift, no significant widening occurs in either the short term or the long term.

In developing an algorithm for facial rejuvenation surgery, many factors must be taken into account, some related to technique and some to the patients (e.g., their tolerance of inconvenience, potential complications, and downtime). This study provides an objective and validated baseline from which to compare differing surgical techniques and to compare them with nonsurgical treatments. Furthermore, this study also supports face-lift surgery as the only rejuvenation technique to have objective and subjective evidence for long-term efficacy, emphasizing the current lack of evidence for other interventions. The advice that we offer our patients, as in other fields of medicine and surgery, should be based on sound evidence rather than personal bias or dogma (Fig. 5).

SUMMARY OF KEY FINDINGS

This study is the first to provide objective measurements and validated subjective assessments of the longevity of a face lift.

1. A face lift will show no statistically significant objective (measured) or subjective (Summit Scale II aesthetic scores) deterioration of the jowl, nasolabial fold, or marionette regions after 5.5 years.
2. Differential aging may occur, with the neck relapsing/aging more than other regions.
3. Adverse stigmata of face lift when objectively measured do not occur in the short or long term.
4. Global subjective assessment suggests that 76 percent of patients will still appear younger 5.5 years after a face lift than they did before the face lift.

ACKNOWLEDGMENTS

The authors thank Janette Karaphillides, Sheila Killick, and Dee Allen for help in the preparation of this article.

REFERENCES

Customer Service Contact Information

All correspondence concerning business matters, including subscription information, orders, or changes of address, should be directed to:

Lippincott Williams & Wilkins
16522 Hunters Green Parkway
Hagerstown, MD 21740-2116
Tel: 800-638-3030
Fax: 301-824-7390
Email: customerservice@wolterskluwer.com

Copyright © American Society of Plastic Surgeons. Unauthorized reproduction of this article is prohibited.